If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+325x-7000=0
a = 2; b = 325; c = -7000;
Δ = b2-4ac
Δ = 3252-4·2·(-7000)
Δ = 161625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{161625}=\sqrt{25*6465}=\sqrt{25}*\sqrt{6465}=5\sqrt{6465}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(325)-5\sqrt{6465}}{2*2}=\frac{-325-5\sqrt{6465}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(325)+5\sqrt{6465}}{2*2}=\frac{-325+5\sqrt{6465}}{4} $
| x+50+3x-30+x/2+70+2x+10=360 | | -5x2+9x=-3 | | -5x+9x=-3 | | 3(1y+-1)=-3 | | 6x2+5x=6 | | 4x2=4x=1=0 | | -35-4n=-7 | | x^2+5x+6=x^2+19x+34 | | x2+5x+14=0 | | x2+6x+9-10=0 | | 6k=2k*48 | | 60-139r=12r^2 | | 9t^2-2t-1/3=0 | | -4x^2+6x^2-12x^2+43+94=0 | | 5x+2=3x=7 | | -5x2+2=7x | | -5x=2=7x | | 4p^2-p-9=0 | | 4n^2-6=-14 | | 4-2y=y+12 | | 8n2+4n-16=n2 | | 2-6n=12 | | (4x-3)(2/3x+5)=0 | | D=6x9 | | 5(x+3)+3(x-2)=41 | | 0.08x=50 | | (9x+184)-(-14)=(7x+156)-(-14) | | 3x+3-2x=8+2x+1-3x | | (x-4)(6x^2+2x-4)+(3x+10)^2=(4x^2-x^2+5x+22) | | 8(4w+5)=3 | | 2+(-3x)=(-2)+(-x) | | x/4-(-2)=-5 |